
5536 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Domain Adaptive LiDAR Point Cloud Segmentation
With 3D Spatial Consistency

Aoran Xiao , Dayan Guan , Xiaoqin Zhang , Senior Member, IEEE, and Shijian Lu

Abstract—Domain adaptive LiDAR point cloud segmentation
aims to learn an effective target segmentation model from labelled
source data and unlabelled target data, which has attracted
increasing attention in recent years due to the difficulty in point-
cloud annotation. It remains a very open research challenge as
point clouds of different domains often have clear distribution
discrepancies with variations in LiDAR sensor configurations,
environmental conditions, occlusions, etc. We design a simple yet
effective spatial consistency training framework that can learn
superior domain-invariant feature representations from unlabelled
target point clouds. The framework exploits three types of spatial
consistency, namely, geometric-transform consistency, sparsity
consistency, and mixing consistency which capture the semantic
invariance of point clouds with respect to viewpoint changes,
sparsity changes, and local context changes, respectively. With
a concise mean teacher learning strategy, our experiments show
that the proposed spatial consistency training outperforms the
state-of-the-art significantly and consistently across multiple public
benchmarks.

Index Terms—LiDAR point clouds, semantic segmentation,
domain adaptation, 3D vision, transfer learning, deep learning.

I. INTRODUCTION

S EMANTIC segmentation of 3D LiDAR point clouds is crit-
ical in different computer vision tasks such as autonomous

driving, remote sensing, robotics, etc. It has achieved great
progress thanks to the recent advances in deep neural networks
(DNNs). Nevertheless, effective DNN training usually requires
large-scale densely annotated point clouds which are extremely
laborious to collect. One approach that could alleviate the an-
notation constraint is to leverage synthetic point clouds that
often come with automatically generated labels [1]. However,
synthetic point clouds exhibit clear distribution discrepancies
as compared with real point clouds [1], [2], and DNN models
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trained by using synthetic point clouds often experience clear
performance drops while applied to real point clouds.

Unsupervised domain adaptation (UDA) can mitigate the dis-
tribution discrepancy between a labelled source domain and an
unlabelled target domain, which has recently attracted increas-
ing attention for the task of 3D LiDAR point cloud segmenta-
tion. Domain adaptive point cloud segmentation has been inves-
tigated in three major approaches: 1) self-training that selects
confident target predictions as pseudo-labels for network train-
ing [2], [4]; 2) cross-domain point cloud translation [1], [5]; and
3) projecting point clouds into 2D space for adaptation [6], [7].
Meanwhile, consistency training [8], [9] has recently emerged
as an effective UDA technique in various 2D image recognition
tasks. It learns robust and generalizable target representations
effectively by enforcing a model’s output to remain consistent
under the presence of input perturbations.

We investigate the efficacy of consistency training for domain
adaptive semantic segmentation of 3D LiDAR point clouds.
The primary challenge lies in designing effective consistency
strategies that can facilitate the learning of domain adaptive
representations for segmenting target point clouds in an un-
supervised manner. Intuitively, the semantics of point clouds
should remain invariant under the presence of variations in sen-
sor viewpoints, point sampling density, and local context. How-
ever, we observe that the predictions of deep models are highly
susceptible to the above variations. This can be observed in
Fig. 1(c), (d), and (e), where the inter-domain prediction errors
(while applying a source-trained model to target point clouds
as illustrated in Fig. 1(b)) are exacerbated in different manners
when the input point clouds undergo changes in sensor view-
points, sampling sparsity, and local context, respectively.

Inspired by the above observations, we design SCT, a sim-
ple yet effective spatial consistency training framework that can
learn effective domain adaptive point cloud representations. SCT
introduces spatial perturbations to mimic the aforementioned
variation factors and learns by enforcing the prediction of spa-
tially perturbed point clouds to be consistent with that of the orig-
inal point clouds. We design three types of spatial perturbations:
1) Geometric transform that simulates the viewpoint change of
LiDAR sensors; 2) Sparsity variation that down-samples in-
put point clouds; and 3) Mixing that modifies the local context
of input point clouds. With the three types of spatial perturba-
tions, we formulate three types of spatial consistency including
geometric-transform consistency, sparsity consistency, and mix-
ing consistency which are well tailored to the spatial characteris-
tics of point clouds. With a mean teacher learning strategy [10],
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Fig. 1. Spatial consistency training helps in domain adaptive LiDAR segmentation: (a) shows the ground-truth segmentation of one target LiDAR scan from
SemanticPOSS [3] and the rest shows its segmentation by different models. Specifically, (b) shows the segmentation by a “Source-only” model trained with the
source data (i.e., synthetic point clouds in SynLiDAR [1]) whose performance degrades clearly while applied to the target scan from a different domain. The
performance degradation exacerbates when the target scan suffers from spatial perturbations such as geometric transformation (rotation, scaling, and flipping) in
(c), sparsity changes (point down-sampling) in (d), and local context changes (i.e., the presence of persons (in red) around cars) in (e). Our Spatial Consistency
Training exploits the inherent nature of LiDAR point clouds and semantic invariance with respect to spatial perturbations to regularize the domain adaptation
process, leading to clearly improved segmentation of the target scan as in (f). The red boxes highlight areas with substantial performance disparities, and LiDAR
views in all subfigures are aligned for easy comparison. Best viewed in color.

a simple implementation of the three types of spatial consis-
tency outperforms the state-of-the-art with significant margins
as illustrated in Fig. 1(f).

In summary, the contributions of this work are threefold.
First, we identify that spatial perturbations including geomet-
ric transformation, sparsity changes, and local context changes
can clearly degrade the cross-domain LiDAR point cloud seg-
mentation. To this end, we design three types of spatial consis-
tency learning strategies tailored for LiDAR point clouds, which
help learn domain adaptive representations and enhance unsu-
pervised cross-domain transfer of LiDAR point clouds greatly.
Second, our proposed spatial consistency training framework,
characterized by its elegant simplicity, exceptional effectiveness,
and computational efficiency (can train with a single NVIDIA
2080Ti of 11 GB), can serve as a strong baseline and foun-
dation for future studies. We will release code to facilitate
this process. Third, extensive experiments over two challeng-
ing synthetic-to-real benchmarks (i.e., SynLiDAR [1] → Se-
manticKITTI [10] and SynLiDAR→SemanticPOSS [11]) show
that the proposed framework outperforms the state-of-the-art
consistently by large margins.

The remainder of this paper is organized as follows. Section II
provides a comprehensive review of related studies, including
research on point cloud semantic segmentation, domain adap-
tive LiDAR segmentation, and consistency learning. Section III

presents the proposed method in detail including problem defini-
tion, spatial consistency training, and fast point-wise matching.
Section IV presents experimental results as well as related anal-
ysis. Finally, several concluding remarks are drawn in Section V.

II. RELATED WORK

A. Point Cloud Semantic Segmentation

LiDAR point clouds have been widely exploited in various
autonomous navigation tasks for 3D scene understanding. This
triggers several large-scale LiDAR point-cloud datasets [1], [3],
[11], [12], [13] which greatly promote the research in 3D point
cloud segmentation [14], [15], [16], [17]. Meanwhile, differ-
ent deep architectures and learning algorithms have been pro-
posed. One typical approach is to project 3D point clouds into
2D depth images and then adopt standard 2D convolution neural
networks for segmentation [18], [19], [20], [21], [22], [23]. This
approach is efficient for processing large-scale point clouds but
tends to lose geometric information in its 3D-to-2D mapping
process. Another approach employs multilayer perceptron for
point cloud representation learning [24], [25], [26] but is com-
putationally intensive for large-scale point clouds. Beyond that,
several studies [27], [28], [29], [30] quantize point clouds into
discrete 3D grids and leverage 3D convolutions [31] or sparse
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convolutions [27], [32], [33] for learning and segmenting vox-
elized points. We follow [1], [2] and adopt the state-of-the-art
MinkowskiNet [27] which is a sparse convolutional 3D point
cloud segmentation network with a fine balance between accu-
racy and efficiency.

B. Domain Adaptive LiDAR Segmentation

Domain adaptive point cloud segmentation [1], [2], [4], [6],
[7], [34], [35] aims for optimal exploitation of previously an-
notated ‘source’ point clouds while handling unannotated ‘tar-
get’ point clouds collected in various new domains. It has at-
tracted increasing attention recently due to the challenge in point
cloud annotation [36]. Earlier studies [6], [7], [37], [38] project
point clouds into depth images and then adopt 2D UDA meth-
ods for point cloud segmentation. However, these studies are
model-specific and not applicable across deep architectures [39].
Recently, several model-agnostic studies [1], [2], [4] handle the
domain discrepancy in the input space directly. For example, [1]
translates synthetic point clouds to have similar appearances and
sparsity as real point clouds. [5] formulates domain adaptation
as a point cloud completion task to minimize density variation
across domains. [2], [4] mitigate domain discrepancy by mixing
source and target data and creating an intermediate domain with
a smaller domain gap. Differently, we design a novel spatial con-
sistency training framework that explores consistency training
for domain adaptive 3D LiDAR segmentation.

C. Consistency Training

Consistency training has been widely explored for semi-
supervised learning of 2D images, aiming to enhance the robust-
ness of the learnt models while facing various input perturba-
tions. Under this context, different ways of perturbations have
been investigated, e.g., by including perturbation noises [40],
[41], [42], [43], image augmentation [44], [45], [46], etc. Re-
cently, one line of research [8], [9], [47], [48] extends the concept
of consistency training to the unsupervised domain adaptation
of 2D images, largely by designing effective image augmenta-
tions for reducing domain gaps across datasets. In addition, an-
other line of research extends consistency training to point cloud
tasks. For instance, [49] presents a point-level consistency loss
for 3D semi-supervised semantic segmentation, while [50] intro-
duced a multi-level consistency framework for domain adaptive
3D object detection. Beyond that, several self-supervised net-
works [51], [52], [53] adopt contrastive loss for learning consis-
tent predictions over augmented point cloud views. As a com-
parison, we design three types of spatial consistency for learning
domain adaptive point cloud representations for the task of Li-
DAR point cloud semantic segmentation.

D. Mean-Teacher Structure

The “mean-teacher” architecture is a classical architecture
that has been widely adopted in various 2D computer vision
tasks such as semi-supervised learning [10], [54] and unsuper-
vised domain adaptation [9]. It involves two networks: a student
and a teacher. The student is the main network being trained,

while the teacher is a copy of the student with a slower update.
During the training, the teacher regularizes the student by en-
suring that their predictions on unlabelled data are consistent.
Recently, it has been extended into 3D point cloud recognition,
including semi-supervised 3D segmentation [55], domain adap-
tive 3D detection [56] and segmentation [2], etc.

III. METHODS

This section presents the proposed method, which consists of
four subsections that describe the problem definition for UDA in
LiDAR point cloud segmentation, the proposed SCT framework,
a fast point-wise matching strategy, and the spatial consistency
strategy, respectively.

A. Problem Definition

Under the setting of UDA, we have access to LiDAR point
cloud data from a labeled source domain Ds = {xi

s, y
i
s}Ns

i=1 and
an unlabeled target domain Dt = {xi

t}Nt
i=1, where Ns and Nt

represent scan numbers of LiDAR point clouds from the source
and target domains, respectively. Each LiDAR point cloud xi ∈
Rni×3 consists of ni points with their 3D coordinates while
yis ∈ Rni

denotes the point-wise labels of the corresponding
training sample from the source domain. The goal of domain
adaptive point cloud segmentation is to learn a model F based
on Ds and Dt that can produce accurate predictions ŷt for new
target data from Dt.

B. Overall Framework

The proposed SCT integrates supervised knowledge from the
source domain and self-supervised knowledge from the target
domain for learning domain-adaptive representations for seg-
menting target LiDAR point clouds. Fig. 2 shows the overall
network framework and Algorithm 1 provides the pseudo-code
of the proposed SCT. In the following subsection, we present
the Network Architecture of SCT, as well as the Training and
Inference of SCT on the task of 3D point cloud semantic seg-
mentation.

Network Architecture We adopted the mean-teacher architec-
ture [10] in the implementation of the proposed SCT. Specif-
ically, the network F consists of a teacher network FT with
parameters θT , and a student network FS with parameters θS .
Both are 3D segmentation networks and they share the same
network structures.

Training For the labelled source domain, we adopt standard
supervised learning to learn semantic structures. Specifically, for
a source point cloud scan with corresponding labels {xi

s, y
i
s},

we adopt standard cross entropy loss as supervised loss Ls to
optimize the student network FS . The loss is defined as:

Ls =
1

Ns

Ns∑

i=1

1

ni
s

ni
s∑

j=1

H(yi,js , pi,js (y|xi,j
s )) (1)

where pi,js ∈ R1×C is the output probability distribution
of source point j of xi

s over C classes, i.e., pi,js =
softmax(FS(x

i,j
s )), and H denotes the entropy.
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Fig. 2. Pipeline of spatial consistency training (SCT) framework. Leveraging the mean-teacher scheme [10], the student network updates at each iteration by the
exponential moving average of itself as the teacher network. The learning enforces the student predictions on spatially perturbed point clouds to be consistent with
the teacher predictions on the corresponding raw point clouds under a Consistency Loss. We design three types of spatial consistency, namely, geometric-transform
consistency, sparsity consistency, and mixing consistency, which are tailored to the spatial characteristics of LiDAR point clouds for enhancing the cross-domain
segmentation performance.

For an unlabelled target scan xt, we first generate a spatially
perturbed viewΩ(xt)by randomly applying one of three types of
spatial perturbations as to be described in Section III-D. We then
feed Ω(xt) to the student network FS to obtain prediction logits
FS(Ω(xt)). Similarly, we feed xt to the teacher network FT to
obtain prediction logits FT (xt). The learning from unlabelled
target point clouds can thus be achieved by a cross-entropy loss
that enforces the student’s predictions to be consistent with the
teacher’s predictions as follows:

Lt =
1

Nt

Nt∑

i=1

1

ni
t

nj
t∑

j=1

H(ŷi,jt , pi,jt (y|Ω(xi,j
t ))), (2)

where ŷi,jt is the pseudo label generated by the teacher model,
which is defined as the class with the maximum prediction prob-
ability, i.e., ŷi,jt = argmax(FT (x

i,j
t )).

Note the teacher network does not back-propagate gradients
in training. Instead, it is updated iteratively through exponential
moving average of the momentum of the student network as
follows:

θT = βθT + (1− β)θS (3)

where β is the momentum update rate.
The overall objective is a weighted combination of the super-

vised and unsupervised losses as follows:

L = Ls + λtLt (4)

where λt is a balancing weight.
Successful training with the spatial consistency pipeline in

Fig. 2 has two prerequisites. First, it requires an efficient match-
ing algorithm to match unlabelled target points of two different
views, which is a nontrivial task as point clouds are disordered

and unstructured data. Second, it requires effective spatial con-
sistency strategies, i.e., the design of Ω for learning from un-
labelled target data. For the first prerequisite, we design a fast
online matching strategy as to be described in Section III-C. For
the second prerequisite, we design three types of spatial consis-
tency as to be described in Section III-D.

Inference After training, we employ the student network di-
rectly for inference. Hence, SCT introduces no additional com-
putational overhead during the inference stage.

C. Fast Point-Wise Matching

3D semantic segmentation of LiDAR point clouds is compu-
tationally intensive as each point-cloud scan consists of thou-
sands of points. Existing networks adopt either random sam-
pling [26], [57] or voxelization [27], [28], [29] for reducing the
input points. However, both strategies cause point misalignment
across two point-cloud views (i.e., xt and Ω(xt)). In addition,
many point-cloud augmentation strategies such as rotation and
scaling alter the 3D coordinates of points, ruling out the possi-
bility of nearest distance search across two point-cloud views.
The concatenation of these operations makes efficient point-wise
matching complicated and challenging. One solution is to build
point-wise correspondence offline [51], but it constricts the vari-
ation of training data and also incurs great overhead in compu-
tation and storage space.

We develop a simple yet effective approach that can perform
efficient point-wise matching across two point-cloud views.
Specifically, after loading a LiDAR point-cloud scan as an ar-
ray, we assign a unique digital identity to each point which is
encoded based on the point position in the array and the posi-
tion of the LiDAR scan in the dataset. While matching points
in two views, we search for the intersections of point identities.
The resultant indexes enable a direct retrieval of corresponding
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Algorithm 1: Pseudocode of SCT in a Pytorch-like style.
# i: index of the current target LiDAR scan
# x_t: point cloud of current target scan i
# F_T, F_S: teacher, student segmentation network

import numpy as np
F_T.params = F_S.params# initialize
F_T.params.detach()# no back-propagate gradients for
teacher

# Data Preprocessing
pt_num = x_t.shape[0]# point number
ids = np.arange(pt_num)
ids = ids + (i << 32)# assign a unique id for each point
x_t2, ids2 = Omega(x_t,ids)# spatial perturbation
x_t1, ids1 = aug(x_t, ids)# randomly augmentation
x_t2, ids2 = aug(x_t2, ids2)# randomly augmentation

# Fast Point-wise Matching
co_ids = np.intersect1d(ids1, ids2) # ids of co-existed
points in two views

sorter = np.argsort(ids1)
m_ids1 = sorter[np.searchsorted(ids1, co_ids,
sorter=sorter)]

sorter = np.argsort(ids2)
m_ids2 = sorter[np.searchsorted(ids2, co_ids,
sorter=sorter)]

# Forward to Model
pred_t1 = F_T.forward(x_t1)
pred_t2 = F_S.forward(x_t2)
# supervised loss and consistency loss
loss_s = CrossEntropyLoss(pred_t1, labels_t1)
loss_t = CrossEntropyLoss(pred_t2[m_ids2],
pred_t1[m_ids1].detach())

loss = loss_s + lambda_t*loss_t

# Update Network
loss.backward()
update(F_S.params)# update student
F_T.param = beta*F_T.param + (1-beta)*F_S.param #
ema update teacher

point-wise logits from both views, leading to point pairs that can
be exploited to compute the spatial consistency loss efficiently.
Algorithm 1 provides pseudocode for Fast Point-wise Matching
in a Pytorch and Numpy-like style.

D. Spatial Consistency Strategies

We design three types of spatial consistency in SCT for learn-
ing domain-invariant point cloud representations that are tolerant
to spatial perturbations Ω on target point clouds. More details
about the three types of spatial consistency and the correspond-
ing spatial perturbations are to be described in the ensuing three
subsections.

1) Geometric-Transform Consistency: The spatial distribu-
tion of points in 3D LiDAR point clouds of different domains
can vary greatly due to different configurations and viewpoints
of LiDAR sensors which can lead to significant differences in

geometric structures of point clouds. We introduce geometric
perturbations by randomly applying a set of geometric trans-
formations to the target point clouds, such as rotation, scaling,
and flipping. The geometric consistency training can thus be
achieved by enforcing the model to produce consistent predic-
tions on the spatially transformed and original point clouds as il-
lustrated in Fig. 2(a). This consistency strategy guides the model
to learn domain-invariant geometric features and enhances its
ability to adapt to different domains.

2) Sparsity Consistency: The sparsity/density of 3D LiDAR
point clouds also varies across domains due to different sensor
settings (e.g., laser beam number, field of view, etc.) or envi-
ronments, and such variation can greatly degrade the model’s
inter-domain recognition performance. We introduce sparsity
perturbations by randomly masking a certain portion σ of input
points to generate a sparse view of point clouds. Sparsity con-
sistency training can thus be achieved by enforcing the model to
produce consistent predictions across the original and the spar-
sified point clouds as illustrated in Fig. 2(b). Note that during
training, we only mask out points by setting their values, includ-
ing XYZ coordinates and intensity, to zero, while keeping the
remaining labels unaltered. This consistency strategy encour-
ages the model to learn sparsity-tolerant but semantic-invariant
features, which helps the trained model better adapt across do-
mains with different point-cloud sparsity.

3) Mixing Consistency: Semantic segmentation models of-
ten rely on various local contexts in recognition tasks. However,
the reliance on such spatial priors in the source domain often
misleads the model’s recognition in the target domain due to
spatial distribution variance across domains. To address this,
we introduce spatial context perturbations by randomly mix-
ing points from other LiDAR point-cloud scans which directly
modifies the local context of the current LiDAR scan. The con-
sistency with local contexts can thus be achieved by enforcing
the prediction consistency between the original and mixed views
as illustrated in Fig. 2(c). This consistency induces 3D segmen-
tation models to learn local context-invariant representations,
resulting in enhanced recognition ability in the target domain.
In the implementation, we adopt the recent PolarMix [4] for
context perturbation as PolarMix enriches the local distribution
of the mixing data while preserving LiDAR data fidelity.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We conducted comprehensive experiments to
validate the effectiveness of our SCT. The experiments were per-
formed over two challenging synthetic-to-real benchmarks on
domain adaptive 3D LiDAR semantic segmentation tasks: Syn-
LiDAR [1] → SemanticKITTI [11] and SynLiDAR → Seman-
ticPOSS [3]. The two benchmarks involve three LiDAR point
cloud datasets of road scenes as listed:
� SynLiDAR is a large-scale synthetic LiDAR point cloud

dataset with 198,396 LiDAR scans and point-level annota-
tions of 32 semantic classes. This large-scale dataset was
meticulously collected from nine realistic virtual environ-
ments constructed using Unreal Engine 4, including cities,
towns, harbors, etc. The data acquisition process involved
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utilizing a cutting-edge LiDAR simulator capable of gener-
ating scans with 64 beam numbers. Following prior studies
in [1], [2], we use the officially provided subset with 19,840
scans in our experiments.

� SemanticKITTI is a large-scale real LiDAR point cloud
dataset collected in Germany. It was collected using a Velo-
dyne HDL-64E LiDAR with 64 laser beams. The dataset
consists of 43,552 LiDAR scans with point-wise annota-
tions of 22 semantic classes. We use sequences 00-10 for
training, except sequence 08 for validation, following the
official split.

� SemanticPOSS consists of 2,988 real-world scans with
point-level annotations over 14 semantic classes. It was col-
lected on campus using a Pandora LiDAR sensor equipped
with 40 laser channels, leading to distinctive spatial distri-
butions that set it apart from the SemanticKITTI dataset.
We use sequence 03 for validation and the remaining se-
quences for training, as per the official benchmark guide-
lines.

We evaluate our models using per-class Intersection-over-
Union (IoU) and mean IoU (mIoU) metrics. Following prior
studies [1], [2], we measure IoU and mIoU over 19 classes for
SynLiDAR → SemanticKITTI, and 13 shared classes for Syn-
LiDAR → SemanticPOSS.

2) Implementation Details: To ensure fair comparisons,
we follow [1], [4] and adopt MinkowskiNet [27] as the backbone
model for both teacher and student. MinkowskiNet is a sparse
convolutional network with U-Net structure,1 which stands as
the state-of-the-art with superior accuracy and efficiency in 3D
point cloud segmentation. We first pre-train the network with
cross-entropy loss over source data for 15 epochs by using SGD
optimizer with a learning rate of 0.01, momentum of 0.9, and
weight decay of 1.e-4, with a batch size of 4. When adapting
the model to the target domain, we first initialize the student and
teacher models with the pre-trained weights and then train an-
other 5 epochs with SGD optimizer. We set the learning rate to
0.001, momentum to 0.9, and weight decay to 1.e-4, with a batch
size of 2 for both source and target data. The hyperparameters
λt and β are set at 0.1 and 0.99, respectively. As for Ω in dif-
ferent spatial consistency strategies: For geometric-transform
consistency, we rotate point clouds along the z-axis between
[−π/2, π/2], scale between [0.95, 1.05], and flip along the x-
or y-axis with 50% chance; For sparsity consistency, we ran-
domly mask 50% of points, i.e. σ = 0.5; For mixing consis-
tency, we implement random 90◦ scene-level swapping and three
times instance-level rotate-pasting for PolarMix [4]. We use
TorchSparse library [28] for implementation. All experiments
are conducted on one NVIDIA RTX2080Ti with 11 GB GPU
memory.

B. Ablation Studies

We conduct comprehensive ablation studies to evaluate the
effectiveness of the proposed SCT framework. We report five
models over SynLiDAR → SemanticPOSS including:

1We use MinkowskiNet_0.5. More details can be found at https://github.com/
xiaoaoran/polarmix

TABLE I
ABLATION STUDY OF DIFFERENT SPATIAL CONSISTENCY STRATEGIES OVER

DOMAIN ADAPTIVE 3D LIDAR SEGMENTATION TASK SYNLIDAR →
SEMANTICPOSS

1) Source-only that is trained using supervised loss Ls in (1)
only, without involving target data in the training process;

2) Model (a) that performs geometric-transform consistency
training over target data and supervised learning over
source data;

3) Model (b) that further incorporates sparsity consistency
training on top of the model (a);

4) Model (c) that incorporates mixing consistency training
on top of the model (a); and 5) the full SCT Model (d)
that combines geometric-transform consistency, sparsity
consistency, and mixing consistency in training with target
data, as well as supervised learning for source data.

The experimental results are summarized in Table I. As ex-
pected, the Source-only model trained with SynLiDAR per-
forms poorly due to the clear domain discrepancy. However,
we observe a significant improvement in performance with the
Geometric-transform consistency training, which outperforms
the Source-only model by a large margin. In addition, incor-
porating Sparsity consistency training and mixing consistency
training leads to further improvement in the adaptation, demon-
strating the effectiveness of our designed spatial consistency
strategies. Notably, the full SCT model achieves the best seg-
mentation performance, indicating that the three types of spatial
consistency strategies are complementary and synergistic in do-
main adaptive point cloud segmentation.

C. Comparison With State-of-The-Arts

We compared our spatial consistency training method with
a number of state-of-the-art UDA methods. Tables II and III
show experimental results over the tasks SynLiDAR → Se-
manticKITTI and SynLiDAR → SemanticPOSS, respectively.
As the two tables show, our method outperforms all state-of-
the-art UDA methods clearly and consistently across both tasks,
achieving improvements of +3.8 and +5.9 percent points over
the state-of-the-art [2], respectively. The superior segmentation
performance demonstrates that the proposed spatial consistency
training is indeed an advanced method of domain adaptive se-
mantic segmentation for 3D LiDAR point clouds.

We also qualitatively compare our spatial consistency training
with the Source-only and the state-of-the-art CoSMix [2] over
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TABLE II
EXPERIMENTS ON UNSUPERVISED DOMAIN ADAPTATION WITH SYNLIDAR (AS SOURCE) AND SEMANTICKITTI (AS TARGET)

TABLE III
EXPERIMENTS ON DOMAIN ADAPTIVE SEMANTIC SEGMENTATION FROM SYNLIDAR (AS SOURCE) TO SEMANTICPOSS (AS TARGET)

SynLiDAR → SemanticKITTI. As Fig. 3 shows, the Source-
only produces lots of false predictions due to domain bias. For
CoSMix, many confident yet false predictions are selected as
pseudo labels which accumulate in the iterative self-training
process and finally impair the trained model. Differently, our
SCT minimizes the divergence of predictions across point views
with respect to different spatial perturbations and learns robust
feature representation of the target domain, achieving supe-
rior segmentation performance over point clouds in the target
domain.

Despite its superior adaptive segmentation performance, SCT
still struggles under certain circumstances. One typical scenario
happens when a large portion of segmentation failures belongs to
long-tail classes that have very limited training samples. Such
a lack of training data often degrades representation learning
and compromises the adaptability of the learnt model. Besides,
the checkpoint selection aiming to optimize mIoU potentially
underplays the performance of long-tail classes as well.

It’s worth noting that our SCT framework requires min-
imal computational resources, utilizing only one NVIDIA
GTX2080Ti with 11 GB of GPU memory. In contrast, the state-
of-the-art CosMix [2] requires much more powerful hardware,
utilizing 4×NVIDIA A100 GPUs (each with 40 GB SXM4). We
will release our code as a strong baseline repository, lowering
the research barrier and facilitating future research in domain
adaptive 3D LiDAR segmentation.

Real-to-real adaptation: The proposed SCT can also han-
dle real-to-real adaptation across LiDAR datasets with different
numbers of LiDAR beam lines. Following CoSMix (detailed

TABLE IV
ADAPTATION RESULTS ON SEMANTICPOSS → SEMANTICKITTI

in its appendix), we performed evaluations on SemanticPOSS
(40-line)–SemanticKITTI (64-line) where point clouds are cap-
tured by LiDAR sensors of different beam line numbers. As
Table IV shows, SCT outperforms CoSMix clearly, indicating
its robustness and generalization ability in domain-adaptive Li-
DAR point cloud segmentation.

D. Analysis

We conducted comprehensive experiments to analyse the pro-
posed SCT. The experimental results and findings are detailed
in the subsequent subsections.

1) Varying λt: We examined the effect of parameter λt in
(4), which balances the supervised loss in the source do-
main and the unsupervised spatial consistency loss in the
target domain. Table V shows experimental results over
the task SynLiDAR → SemanticPOSS. We can see that
different λt produce only moderate variations in mIoU,
and all of them outperform the source-only model (i.e.,
λt = 0.0) significantly. The best mIoU is achieved when
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Fig. 3. Qualitative comparison of SCT with the Source-only (with no adaptation) and the state-of-the-art CoSMix [2] in domain adaptive 3D LiDAR semantic
segmentation. The comparison was conducted over the task ‘SynLiDAR → SemanticKITTI’. The ‘Ground truth‘ denotes the ground-truth annotations. The red
rectangles highlight regions of interest. Best viewed in color.

TABLE V
PERFORMANCE OF SPATIAL CONSISTENCY TRAINING UNDER DIFFERENT λt

(THE BALANCE WEIGHT OF SPATIAL CONSISTENCY LOSS AS DEFINED IN (4))
ON THE SYNLIDAR → SEMANTICPOSS UDA TASK

λt = 0.10. The experiments show that our proposed SCT
is tolerant to the variation in balance weight λt.

2) Varying β: We employ the momentum parameter β to
update the teacher model. When β is set to 0, the teacher
model is equivalent to the student model with no temporal
momentum update. We examine the impact of different
values of β in Table VI. We can see that the model per-
forms much better with the exponential moving average
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TABLE VI
EVALUATION OF THE PERFORMANCE OF SPATIAL CONSISTENCY TRAINING

MODELS WITH VARYING MOMENTUM UPDATE WEIGHT β ON THE SYNLIDAR
→ SEMANTICPOSS TASK

TABLE VII
SEGMENTATION PERFORMANCE OF SPATIAL CONSISTENCY TRAINING ON

SYNLIDAR → SEMANTICPOSS WITH COMBINATION OF DIFFERENT

GEOMETRIC TRANSFORMATIONS

TABLE VIII
RESULTS OF OUR SPARSITY CONSISTENCY WITH DIFFERENT PROPORTIONS OF

SPARSITY σ OVER SYNLIDAR → SEMANTICPOSS

and it performs the best when β is set to 0.99, indicat-
ing that a slowly progressing teacher model is beneficial.
At the other end, the teacher model updates too slowly
to capture the latest representative network parameters
with a very high β, and it updates too fast and leads to
less robust and unstable temporal ensembles with a very
low β. Both scenarios impair the trained cross-domain
segmentation models.

3) Geometric Transformations: We study how different ge-
ometric transformations affect adaptation performance.
Table VII presents experimental results under several
typical geometric transformations including rotation,
scaling, and flipping. It can be observed that learning un-
der different geometric perturbations improves the adap-
tation process and more complex geometric perturba-
tions are helpful in enhancing the target performance.

4) Sparsity Ratio: We investigated the impact of sparsity
ratios σ in sparsity consistency training. As Table VIII
shows, incorporating sparsity consistency consistently
leads to clear improvements in target segmentation com-
pared to the baseline (i.e., σ = 0) while the best seg-
mentation performance is achieved when σ = 0.5. The
experiments reveal that setting an appropriate sparsity
ratio is important as a large σ provides limited sparsity
perturbations while a small σ tends to lose necessary ge-
ometric information for point recognition.

5) Different Consistency Losses: We also evaluated the
mean squared error (MSE) loss between the teacher’s

TABLE IX
PERFORMANCE OF SPATIAL CONSISTENCY TRAINING WITH TWO

UNSUPERVISED LOSSES: CROSS-ENTROPY LOSS (Lce) AS DEFINED IN (2), AND

MEAN SQUARED ERROR LOSS (Lmse) AS DEFINED IN (5)

TABLE X
SELECTING PSEUDO LABELS BY THRESHOLDING THEIR PREDICTION

PROBABILITIES

and student’s predictions for consistency regularization:

Lmse =
1

Nt

Nt∑

i=1

1

ni
t

ni
t∑

j=1

(FT (x
i,j
t )− FS(Ω(x

i,j
t )))

2

(5)
Table IX shows experimental results on SynLiDAR →
SemanticPOSS, where Lce denotes the cross-entropy
loss defined in (2). We can observe that optimizing
both unsupervised losses outperforms the Source-only
(N.A.) significantly, validating the effectiveness of spa-
tial consistency training. In addition, optimizing the
cross-entropy loss leads to significantly better perfor-
mance, largely because the re-trained student model is
supervised with hard pseudo-labels, which help to min-
imize prediction entropy.

6) Features Visualization: To better assess the proposed
SCT, we employ t-SNE [61] to visualize point cloud
representations of the target domain. Fig. 4 shows
the feature visualizations for the source-only model,
the state-of-the-art CoSMix [2], and our proposed
SCT, respectively. We can observe that the SCT-
produced features have clearly better discriminability
than those produced by the source-only model, high-
lighting the outstanding adaptation performance of the
proposed SCT. Additionally, SCT also produces more
discriminative target features than CoSMix, achiev-
ing the largest inter-class variance while maintaining
the smallest intra-class variance. This suggests that
the upstream class-wise representations from SCT are
more discernible, making it a reliable indicator of its
effectiveness.

7) Pseudolabel Threshold: We employ all pseudo labels in
the spatial consistency training. At the other end, it is
possible to adopt thresholding to select confident pseudo
labels only in the spatial consistency training. Table X
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Fig. 4. Feature space visualization with t-SNE [61] on SynLiDAR → SemanticKITTI UDA task. The proposed SCT learns more compact feature space for target
domain with smaller intra-class variance and larger inter-class variance as compared with the Source only and the state-of-the-art CoSMix [2]. Different colors
denote different classes and best viewed in color.

TABLE XI
TRAINING RESOURCE USAGE FOR COSMIX AND OUR METHOD SCT OVER

SYNLIDAR → SEMANTICKITTI

shows relevant experiments, where applying different
thresholds δ degrades cross-domain segmentation con-
sistently. We conjecture that the thresholding could pro-
duce many confident but false predictions which lead to
a deviated solution with error propagation in training.
Differently, employing all pseudo labels enables more
comprehensive and robust adaptive learning in the target
domain.

8) Training Time Comparsion: We compare SCT with CoS-
Mix [2] to validate its superior computational efficiency.
For CosMix, we use its official code with default config-
urations and train with four NVIDIA V100 GPUs over
the benchmark SynLiDAR → SemanticKITTI. As Ta-
ble XI shows, SCT (using a single NVIDIA 2080Ti)
can be trained much faster than CosMix Ti. Besides,
it achieves clearly better mIoU. The experiments high-
light the potential of SCT which as a powerful tool
could greatly reduce the research barrier and facili-
tate future research in domain adaptive 3D LiDAR
segmentation.

9) More Analysis for Sampling Strategy: Targeting a sim-
ple, efficient, and effective base technique in point
cloud learning, we adopted random sampling (RS) in
sparsity consistency design. We tested more sophisti-
cated sampling techniques including grid sampling (GS)
and distance-based sampling (DS). Table XII shows
experiments on SynLiDAR → SemanticPOSS, where
DS(f)/DS(c) means assigning higher sampling weights
to farther/closer points. We can see that GS performs

TABLE XII
DIFFERENT SAMPLING STRATEGIES FOR SPARSITY CONSISTENCY IN SCT,
INCLUDING RANDOM SAMPLING (“RS”), GRID SAMPLING (“GS”), AND

DISTANCE-BASED SAMPLING (“DS”, DS(F)/DS(C) DENOTING HIGHER

SAMPLING WEIGHTS ASSIGNED TO FARTHER/CLOSER POINTS)

TABLE XIII
UNSUPERVISED DOMAIN ADAPTATIVE POINT CLOUD SEGMENTATION WITH

THE BACKBONE SPVCNN [28] (ON SYNLIDAR → SEMANTICKITTI)

similarly to RS while DS(c) performs clearly worse,
suggesting that sampling should prioritize nearer and
denser points. In addition, all sampling strategies out-
perform N.A. without using sparsity consistency, vali-
dating our finding on maintaining sparsity invariance in
cross-domain LiDAR segmentation

10) SCT with Different Backbone Models:The proposed SCT
is model-agnostic and can work with different backbone
models. We verify this by implementing it with another
widely adopted 3D segmentation model SPVCNN [28].
As shown in Table XIII, SCT outperforms the Source-
only clearly on SynLiDAR → SemanticKITTI, demon-
strating its superior robustness and generalization across
different backbone models.

11) Failure Analysis: Most segmentation failures with SCT
are associated with long-tail classes (such as “mt.clst.”
in Table II and “garb.” in Table III) that have very limited
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training samples and thereby often suffer from clear over-
fitting. In addition, our checkpoint selection prioritizes
optimizing mIoU which inadvertently sacrifices the per-
formance of long-tail classes. This issue could be allevi-
ated by developing some class-balanced UDA approach
that mitigates the long-tail distribution by balancing the
data distribution across classes.

V. CONCLUSION

This paper proposes a novel spatial consistency training
framework for addressing the domain shift problem in 3D Li-
DAR point cloud segmentation. The approach enforces predic-
tion consistency between raw point clouds and their spatially
perturbed views, guiding the segmentation network to learn
domain-invariant feature representations across domains. Three
novel spatial consistency strategies tailored to the data proper-
ties of LiDAR point clouds are introduced to facilitate effective
consistency training in 3D space, namely geometric-transform
consistency, sparsity consistency, and mixing consistency. Com-
prehensive experimental results demonstrate that the proposed
spatial consistency training significantly improves the perfor-
mance of 3D UDA tasks as compared with the state-of-the-art.
In the future, we plan to investigate more effective spatial con-
sistency strategies to further enhance the performance of our
framework.
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